3.443 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x^3 (d+e x)} \, dx\)

Optimal. Leaf size=202 \[ \frac {\left (c d^2-a e^2\right ) \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 x}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2} \]

[Out]

1/8*(-a*e^2+c*d^2)*(3*a*e^2+c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2
+c*d^2)*x+c*d*e*x^2)^(1/2))/a^(3/2)/d^(5/2)/e^(3/2)-1/2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/x^2-1/4*(c/a
/e-3*e/d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {849, 834, 806, 724, 206} \[ \frac {\left (c d^2-a e^2\right ) \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 x}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]

[Out]

-Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(2*d*x^2) - ((c/(a*e) - (3*e)/d^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])/(4*x) + ((c*d^2 - a*e^2)*(c*d^2 + 3*a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqr
t[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*a^(3/2)*d^(5/2)*e^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps

\begin {align*} \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx &=\int \frac {a e+c d x}{x^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\int \frac {-\frac {1}{2} a e \left (c d^2-3 a e^2\right )+a c d e^2 x}{x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 a d e}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}-\frac {\left (\frac {c^2 d^2}{a}+2 c e^2-\frac {3 a e^4}{d^2}\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 e}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac {\left (\frac {c^2 d^2}{a}+2 c e^2-\frac {3 a e^4}{d^2}\right ) \operatorname {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 e}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac {\left (c d^2-a e^2\right ) \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 162, normalized size = 0.80 \[ \frac {\sqrt {(d+e x) (a e+c d x)} \left (\frac {\left (-3 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{\sqrt {d+e x} \sqrt {a e+c d x}}+\frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (a e (3 e x-2 d)-c d^2 x\right )}{x^2}\right )}{4 a^{3/2} d^{5/2} e^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[a]*Sqrt[d]*Sqrt[e]*(-(c*d^2*x) + a*e*(-2*d + 3*e*x)))/x^2 + ((c^2*d^4 +
2*a*c*d^2*e^2 - 3*a^2*e^4)*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a*e + c
*d*x]*Sqrt[d + e*x])))/(4*a^(3/2)*d^(5/2)*e^(3/2))

________________________________________________________________________________________

fricas [A]  time = 1.94, size = 442, normalized size = 2.19 \[ \left [-\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt {a d e} x^{2} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \, {\left (2 \, a^{2} d^{2} e^{2} + {\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, a^{2} d^{3} e^{2} x^{2}}, -\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt {-a d e} x^{2} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (2 \, a^{2} d^{2} e^{2} + {\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, a^{2} d^{3} e^{2} x^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="fricas")

[Out]

[-1/16*((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(a*d*e)*x^2*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 +
a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*
c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(2*a^2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2
 + a*e^2)*x))/(a^2*d^3*e^2*x^2), -1/8*((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(-a*d*e)*x^2*arctan(1/2*sqrt(
c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e
^2 + (a*c*d^3*e + a^2*d*e^3)*x)) + 2*(2*a^2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c
*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: 2*((2*exp(1)^2*a*exp(2)-2*exp(1)^4*a)/2/
d^2/sqrt(-a*d*exp(1)^3+a*d*exp(1)*exp(2))*atan((-d*sqrt(c*d*exp(1))+(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^
2*exp(1))-sqrt(c*d*exp(1))*x)*exp(1))/sqrt(-a*d*exp(1)^3+a*d*exp(1)*exp(2)))+(-a^2*exp(2)^2-4*exp(1)^2*a^2*exp
(2)+8*exp(1)^4*a^2-2*c*d^2*a*exp(2)-c^2*d^4)/4/d^2/exp(1)/a/2/sqrt(-a*d*exp(1))*atan((sqrt(a*d*exp(1)+a*x*exp(
2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)/sqrt(-a*d*exp(1)))-((sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2
*exp(1))-sqrt(c*d*exp(1))*x)^3*a^2*exp(2)^2-4*exp(1)^2*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqr
t(c*d*exp(1))*x)^3*a^2*exp(2)+2*c*d^2*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)^
3*a*exp(2)+c^2*d^4*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)^3-8*d*exp(1)*sqrt(c
*d*exp(1))*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)^2*a^2*exp(2)+8*d*exp(1)^3*s
qrt(c*d*exp(1))*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)^2*a^2-8*c*d^3*exp(1)*s
qrt(c*d*exp(1))*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)^2*a+d*exp(1)*(sqrt(a*d
*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)*a^3*exp(2)^2+4*d*exp(1)^3*(sqrt(a*d*exp(1)+a*x*
exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)*a^3*exp(2)+2*c*d^3*exp(1)*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2
*x+c*d*x^2*exp(1))-sqrt(c*d*exp(1))*x)*a^2*exp(2)+8*c*d^3*exp(1)^3*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2
*exp(1))-sqrt(c*d*exp(1))*x)*a^2+c^2*d^5*exp(1)*(sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*exp(1))-sqrt(c*d*e
xp(1))*x)*a-8*d^2*exp(1)^4*sqrt(c*d*exp(1))*a^3)/8/d^2/exp(1)/a/((sqrt(a*d*exp(1)+a*x*exp(2)+c*d^2*x+c*d*x^2*e
xp(1))-sqrt(c*d*exp(1))*x)^2-d*exp(1)*a)^2)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 882, normalized size = 4.37 \[ -\frac {3 a \,e^{3} \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{x}\right )}{8 \sqrt {a d e}\, d^{2}}-\frac {a \,e^{4} \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+\left (x +\frac {d}{e}\right ) c d e}{\sqrt {c d e}}+\sqrt {\left (x +\frac {d}{e}\right )^{2} c d e +\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}\, d^{3}}+\frac {a \,e^{4} \ln \left (\frac {c d e x +\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}}{\sqrt {c d e}}+\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\right )}{2 \sqrt {c d e}\, d^{3}}+\frac {c^{2} d^{2} \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{x}\right )}{8 \sqrt {a d e}\, a e}+\frac {c \,e^{2} \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+\left (x +\frac {d}{e}\right ) c d e}{\sqrt {c d e}}+\sqrt {\left (x +\frac {d}{e}\right )^{2} c d e +\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}\, d}-\frac {c \,e^{2} \ln \left (\frac {c d e x +\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}}{\sqrt {c d e}}+\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\right )}{2 \sqrt {c d e}\, d}+\frac {c e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{x}\right )}{4 \sqrt {a d e}}-\frac {5 \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\, c e x}{4 a \,d^{2}}-\frac {\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\, c^{2} x}{4 a^{2} e}-\frac {\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\, c}{a d}-\frac {\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\, c^{2} d}{4 a^{2} e^{2}}-\frac {\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\, e^{2}}{4 d^{3}}-\frac {\sqrt {\left (x +\frac {d}{e}\right )^{2} c d e +\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\, e^{2}}{d^{3}}+\frac {5 \left (c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x \right )^{\frac {3}{2}}}{4 a \,d^{3} x}+\frac {\left (c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x \right )^{\frac {3}{2}} c}{4 a^{2} d \,e^{2} x}-\frac {\left (c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x \right )^{\frac {3}{2}}}{2 a \,d^{2} e \,x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)/x^3/(e*x+d),x)

[Out]

5/4/d^3/a/x*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)-1/4*e^2/d^3*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)-1/d/a*
(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*c-1/2*e^2/d*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+
a*d*e+(a*e^2+c*d^2)*x)^(1/2))/(c*d*e)^(1/2)*c-3/8*e^3/d^2*a/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e
)^(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/x)+1/4*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^
(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/x)*c-5/4*e/d^2*c/a*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*x-1/
2/d^2/a/e/x^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)+1/4/d/a^2/e^2/x*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)*
c-1/4*d/a^2/e^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*c^2+1/8*d^2/a/e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2
)*x+2*(a*d*e)^(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/x)*c^2-1/4/a^2/e*c^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^
2)*x)^(1/2)*x+1/2/d^3*e^4*ln((c*d*e*x+1/2*a*e^2+1/2*c*d^2)/(c*d*e)^(1/2)+(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/
2))/(c*d*e)^(1/2)*a-1/d^3*e^2*((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/2/d^3*e^4*ln((1/2*a*e^2-1/2*c*d^
2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)*a+1/2/d*e^2*ln((1/
2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+((x+d/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)*c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^3\,\left (d+e\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^3*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^3*(d + e*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x^{3} \left (d + e x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**3/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x**3*(d + e*x)), x)

________________________________________________________________________________________